Jarod Rollins stands in a lab at the MDI Biological Laboratory, where he researches lifespan and “health span.” PHOTO COURTESY OF THE MDI BIOLOGICAL LABORATORY

New findings on lifespan, health



BAR HARBOR — “Living Long and Living Well: Is It Possible To Do Both?” is the title of an article published recently in the “Journal of Gerontology: Biological Sciences.” Jarod Rollins, a postdoctoral researcher at the MDI Biological Laboratory, was one of the lead researchers.

The authors studied various parameters of health in short-lived strains of the roundworm, C. elegans, with the goal of developing an empirical definition of the onset of old age and of teasing out which health markers are most predictive of a long and healthy life.

With the development of new genetics tools, scientists are getting closer to developing therapies to extend human lifespan, but the effect of such therapies on health span (the proportion of life spent in good health) is unclear. While it used to be thought that therapies to extend lifespan would also extend “health span,” new research is showing that may not always be true.

“All anti-aging interventions aren’t created equal,” said Rollins. “A recent study in C. elegans found, for instance, that the proportion of life spent in a frail state is longer in long-lived mutants than in wild-type animals. Our research is aimed at developing tools to help scientists assess the effect of lifespan-enhancing interventions on health span.”

The molecular mechanisms of aging are a focus of research at the MDI Biological Laboratory, which is pioneering new approaches to regenerative medicine focused on the development of drugs to increase healthy lifespan by enhancing the body’s innate ability to repair and regenerate lost or damaged tissues and organs.

Rollins works in the laboratory of Aric Rogers, the lead author of the study, in the institution’s Kathryn W. Davis Center for Regenerative Biology and Medicine.

  1. elegans is a popular model in aging research because its short lifespan of only two to three weeks allows scientists to quickly assess the effects of anti-aging interventions, including genetic manipulation and drug therapies. The tiny, soil-dwelling roundworm also has other advantages for research: it shares many of its genes with humans and its health markers roughly correspond to those in humans.

One marker that the scientists found to be predictive of a healthy lifespan in C. elegans is movement speed. Movement speed corresponds to walking speed in humans, which studies have found to be an accurate predictor of longevity. One of the scientists’ next steps will be to further develop movement speed as a marker for assessing the effect of anti-aging interventions in the roundworm.

“As science closes in on the mechanisms underlying aging, the tradeoffs between lifespan and health span become a greater cause for concern,” said Kevin Strange, president of the MDI Biological Laboratory. “The scientists in the Rogers laboratory are at the forefront of developing metrics to assess the impact of anti-aging interventions on quality of life.”

In addition to Rollins and Rogers, authors of the study include Amber C. Howard, Sarah K. Dobbins and Elsie H. Washburn.

The research was supported by grants to Rogers from the National Institute on Aging of the National Institutes of Health and the Ellison Medical Foundation, as well as by Institutional Development Awards (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health.

 

Leave a Reply

Your email address will not be published. Required fields are marked *